Internal energy is The sum of all forms of molecular energies (kinetic and potential ) of a substance. In the study of thermodynamics, a usually ideal gas is considered as a working substance. the molecules of an ideal gas are mere mass points that exert no force on one another. so the internal energy of an ideal gas system is generally the translational kinetic energy of its molecules.
since the temperature of a system is defined as the average kinetic energy of its molecules, thus for an ideal gas system, the internal energy is directly proportional to its temperature.
when we heat substance energy associated with its atoms or molecules is increased i.e, heat is converted to internal energy.
See Also: Difference between Heat and Temperature
It is important to note that energy can be added to a system even though no heat transfer takes place. for example, when two objects are rubbed together, their internal energy increases because of mechanical work. the increase in temperature of the object is an indication of an increase in the internal energy. similarly, when an object slides over any surface and comes to rest because of frictional force, the mechanical work done on or by the system is partially converted into internal energy.
In thermodynamics, internal energy is a function of the state. consequently, it doesn’t depend on the path but depends on the initial and final states of the system. consider a system that undergoes a pressure and volume change from Pa and Va to Pb and Vb respectively, regardless of the process by which the system changes from initial to final state. by experiment it has been seen that the change in internal energy is always the same and is independent of paths C1 and C2.
Thus internal energy is similar to gravitational potential energy. so like the potential energy, it is the change in internal energy and not its absolute value, which is important.
The internal energy of particle systems can vary, regardless of their spatial position or acquired shape (in the case of liquids and gases). For example, when introducing heat to a closed system of particles, thermal energy is added that will affect the internal energy of the assembly.
However, the internal energy is a state function, that is, it does not attend to the variation that connects two states of matter, but to the initial and final state of it. That is why the calculation of the variation of the internal energy in a given cycle will always be null since the initial and final states are one and the same.
The formulations to calculate this variation are :
ΔU = U B – U A, where the system has gone from state A to state B.
ΔU = -W, in cases where a quantity of mechanical work W is carried out, which results in the expansion of the system and the decrease of its internal energy.
ΔU = Q, in the cases in which we add caloric energy that increases the internal energy.
ΔU = 0, in cases of cyclical changes in internal energy.
All these cases and others can be summarized in an equation that describes the Principle of Conservation of Energy in the system:
ΔU = Q + W
Here’s the List of Some Examples of internal energy:
Suggested Video:
Related Topics:
Buying a home is one of the most significant investments you'll make in your lifetime.…
In the world of business, uncertainty and risk are inevitable. General liability insurance is a…
Gastritis and ulcers are irritations, which must be treated urgently in order not to develop…
Studying abroad can be a life-changing experience, opening doors to new cultures, perspectives, and opportunities.…
The difference between osmosis and dialysis is that Osmosis is a physical phenomenon by…
The Difference between Vitamins and Proteins is given here. Vitamins and proteins are essential…
View Comments
This is useful and understandable.
This is useful and understandable