Maxwell’s Equations: Derivation in Integral and Differential form

Maxwell's EquationsMaxwell's Equations
Maxwell’s Equations

Maxwell’s equations are the basic equations of electromagnetism which are a collection of Gauss’s law for electricity, Gauss’s law for magnetism, Faraday’s law of electromagnetic induction, and Ampere’s law for currents in conductors. Maxwell equations give a mathematical model for electric, optical, and radio technologies, like power generation, electric motors, wireless communication, radar, and, Lenses, etc.
These Equations explain how magnetic and electric fields are produced from charges.
These equations are part of the comprehensive and symmetrical theory of electromagnetism, which is essential to understand electromagnetic waves, optics, radio and TV transmission, microwave ovens, and magnetically levitated trains.

What are the four of Maxwell’s Equations?

The four of Maxwell’s equations for free space are:

The First Maxwell’s equation (Gauss’s law for electricity)

Gauss’s law states that flux passing through any closed surface is equal to 1/ε0 times the total charge enclosed by that surface.

The integral form of Maxwell’s 1st equation


It is the integral form of Maxwell’s 1st equation.

Maxwell’s first equation in differential form


It is called the differential form of Maxwell’s 1st equation.

The Second Maxwell’s equation (Gauss’s law for magnetism)

Gauss’s law for magnetism states that the net flux of the magnetic field through a closed surface is zero because monopoles of a magnet do not exist.

maxwells second equation

The Third Maxwell’s equation (Faraday’s law of electromagnetic induction )

According to Faraday’s law of electromagnetic induction

third maxwells equation

It is the differential form of Maxwell’s third equation.
Visit Our Page for Related Topics: Electromagnetism
Suggested Video:

The Fourth Maxwell’s equation ( Ampere’s law)

The magnitude of the magnetic field at any point is directly proportional to the strength of the current and inversely proportional to the distance of the point from the straight conductors is called Ampere’s law.

maxwells fourth equation

Third Maxwell’s equation says that a changing magnetic field produces an electric field. But there is no clue in the fourth Maxwell’s equation whether a changing electric field produces a magnetic field? To overcome this deficiency, Maxwell’s argued that if a changing magnetic flux can produce an electric field then by symmetry there must exist a relation in which a changing electric field must produce a changing magnetic flux.
For more related informative topics Visit our Page: Electricity and Magnetism
Related Topics:

Physics Related Links:

imdad.alvi

View Comments

  • We must consider the the solar corona free electrons im which our Earth is immersed when we think about the relation between electicity and magnetissm

  • In 3rd Maxwell Equation make correction of induce end definition as
    €= integral (E.dl) becoz electric field is potential gradient not potential density
    Then stokes theorem will make appear dA to cancel out both sides

Recent Posts

Is energy quantized in classical physics?

No, according to classical wave theory the emission of electromagnetic radiations from the surface is…

3 months ago

Types of laser

Basically, there are four types of laser which includes: Gas Lasers Solid State lasers Liquid…

3 months ago

Ultrasound frequency range

What is ultrasonics? The study and application of mechanical vibrations with frequencies beyond the limits…

3 months ago

Electromagnetic Energy: What are some examples of it?

Electromagnetic energy definition Electromagnetic energy is the amount of energy stored in a region of…

3 months ago

Fundamental units and Derived Units with Examples

The Main Difference between fundamental Units and Base units is that Units that Express base…

3 months ago

Newton’s First law of Motion Examples in Our Daily Life

Newton's first law of motion states that " A body continues its state of rest…

3 months ago