capacitance of a capacitor Formulacapacitance of a capacitor Formula
capacitance of a capacitor

The capacitance of a capacitor is the ability of a capacitor to store an electric charge per unit of voltage across its plates of a capacitor. Capacitance is found by dividing electric charge with voltage by the formula C=Q/V. Its unit is Farad.

Formula

Its formula is given as:

C=Q/V

Where C is capacitance, Q is voltage, and V is voltage. We can also find charge Q and voltage V by rearranging the above formula as:

Q=CV

V=Q/C

 Farad is the unit of capacitance. One Farad is the amount of capacitance when one coulomb of charge is stored with one volt across its plates.

Most capacitors that are used in electronics work have capacitance values that are specified in microfarad (µF) and picofarads(pF) . A microfarad is one-millionth of a farad, and a picofarad is one-trillionth of a farad.

What are the factors that effect the capacitance of capacitor?

It depends on the following factors:

Area of plates

Capacitance is directly proportional to the physical size of the plates as determined by the plate area,A. A larger plate area produces a larger capacitance and a smaller capacitance.Fig(a) shows that the plate area of a parallel plate capacitor is the area of one of the plates. If the plates are moved in relation to each other, as shown in fig(b), the overlapping area determines the effective plate area. This variation in the effective plate area is basic for a certain type of variable capacitor.

Plates seperation

`Capacitance is inversely proportional to the distance between the plates. The plate separation is designated d, as shown in fig(a). Greater separation of the plates produces a smaller capacitance, as illustrated in fig(b). As previously discussed, the breakdown voltage is directly proportional to the plate separation. The further the plates are separated, the greater the breakdown voltage.

Dielectric Constant of material

As you know, the insulating material between the plates of a capacitor is called the dielectric. Dielectric materials tend to reduce the voltage between plates for a given charge and thus increase the capacitance. If the voltage is fixed, more charge can be stored due to the presence of a dielectric than can be stored without a dielectric. The measure of a material’s ability to establish an electric field is called dielectric constant or relative permittivity, symbolized by ∈r.

Capacitance is directly proportional to the dielectric constant. The dielectric constant of a vacuum is defined as 1 and that of air is very close to 1. These values are used as a reference, and all other materials have values of ∈r specified with respect to that of a vacuum or air. For example, a material with ∈r=8 can result in a capacitance eight times greater than that of air with all other factors being equal.

The dielectric constant ∈r is dimensionless because it is a relative measure. It is a ratio of the absolute permittivity of a material,∈r, to the absolute permittivity of a vacuum,∈0, as expressed by the following formula:

r=∈/∈0

Below given some common dielectric materials and typical dielectric constants for each. Values can vary because they depend on the specific composition of the material.

Material                 Typical ∈r values

  • Air                              1.0
  • Teflon                       2.0
  • Paper                          2.5
  • Oil                               4.0
  • Mica                           5.0
  • Glass                           7.5
  • Ceramic                    1200

The dielectric constant ∈r is dimensionless because it is a relative measure. It is a ratio of the absolute permittivity of a material,∈r, to the absolute permittivity of a vacuum,∈0, as expressed by the following formula:

∈r=∈/∈0

The value of ∈0 is 8.85×10-12 F/m.

Formula of capacitance in terms of physical parameters

You have seen how capacitance is directly related to plate area, A, and the dielectric constant,∈r, and inversely related to plate separation, d. An exact formula for calculating the capacitance in terms of these three quantities is:

C=A ∈r∈/d

where ∈= ∈r0=∈r(8.85×10-12F/m)

Capacitance of parallel plate capacitor derivation

Consider a parallel plate capacitor. The size of the plate is large and the distance between the plates is very small, so the electric field between the plates is uniform.

The electric field ‘E’ between the parallel plate capacitor is:

relation of parallel plate capacitor

Capacitance of cylindrical capacitors physics

Consider a cylindrical capacitor of length L, formed by two coaxial cylinders of radii ‘a’ and ‘b’.Suppose L >> b, such that there is no fringing field at the ends of cylinders.

Let ‘q’ is the charge in the capacitor and ‘V’ is the potential difference between plates. The inner cylinder is positively charged while the outer cylinder is negatively charged. We want to find out the expression of capacitance for the cylindrical capacitor. For this, we consider a cylindrical Gaussian surface of radius ‘r’ such that a<<b.

If ‘E’ is the electric field intensity on any point of the cylindrical Gaussian surface, then by Gauss’s law:

If ‘V’ is the potential difference between plates, then

This is the relation for the capacitance of a cylindrical capacitor.

Capacitance of a spherical capacitor

Capacitance of an isolated spherical capacitor

External source
https://en.wikipedia.org/wiki/Capacitance

imdad.alvi

View Comments

  • Hey There. I found your blog the usage of msn. That is a really well written article.
    I will be sure to bookmark it and return to
    read more of your helpful information. Thanks for the post.
    I'll certainly comeback.

  • After I originally commented I appear to have clicked the -Notify me when new
    comments are added- checkbox and from now on every
    time a comment is added I recieve 4 emails with the same comment.
    There has to be a means you are able to remove me from that service?
    Thank you!

  • I feel that is certainly amongst the this sort of lot important information for me personally.
    And i'm glad studying your article. But would like to remark on few
    common things, The website style is ideal, the articles is
    actually nice : D. Good process, cheers

  • Appreciating the commitment you put into your blog and in depth information you offer.
    It's great to come across a blog every once in a while
    that isn't the same old rehashed material. Excellent
    read! I've bookmarked your site and I'm adding your RSS feeds to
    my Google account.

  • I've been exploring for somewhat for almost any top quality articles
    or weblog posts within this sort of house . Exploring in Yahoo I eventually stumbled upon this site.
    Studying this information So i'm satisfied to exhibit that I've an extremely
    perfect uncanny feeling I came upon just what I needed.
    I this kind of lot definitely can make certain to don?t neglect to remember
    this website and gives it a glance regularly.

  • Wow, this piece of writing is good, my younger ister is analyzing these kinds of things, therefore I am going to let know her.

  • Hey! This post could not be written any better! Reading this
    post reminds me of my previous room mate! He always kept chatting about
    this. I will forward this article to him.
    Fairly certain he will have a good read. Thank you
    for sharing!

  • I am curious to find out what blog system you happen to be using?
    I'm experiencing some small security problems with my latest website and I'd like to
    find something more safeguarded. Do you have any solutions?

  • Really when someone doesn't know afterward its up to other users that they will assist, so here it takes place.

  • At this time it seems like Movable Type is the preferred blogging platform
    out there right now. (from what I've read) Is that what you are using on your blog?

Recent Posts

The Ultimate Guide for Home Buyers: Everything You Need to Know

Buying a home is one of the most significant investments you'll make in your lifetime.…

5 months ago

Understanding General Liability Insurance: Essential Coverage for Your Business

In the world of business, uncertainty and risk are inevitable. General liability insurance is a…

6 months ago

Difference between Gastritis and ulcer

Gastritis and ulcers are irritations, which must be treated urgently in order not to develop…

7 months ago

Study in UAE: Your Complete Guide to Enrolling Abroad

Studying abroad can be a life-changing experience, opening doors to new cultures, perspectives, and opportunities.…

8 months ago

Difference between Osmosis and dialysis

  The difference between osmosis and dialysis is that Osmosis is a physical phenomenon by…

8 months ago

Difference between Vitamins and proteins

  The Difference between Vitamins and Proteins is given here. Vitamins and proteins are essential…

8 months ago